
An Innocent User’s Perspective on the CAS

Robert Lupton Princeton University

FNAL, 1st March 2004



Outline



Outline

I must declare an interest: I have been closely involved with
Alex and Jim in working on the skyserver schema. But I’m
not recusing myself from giving this talk. Or at least writing
it.



Outline

Introduction



Outline

Introduction

The CAS’s Strengths



Outline

Introduction

The CAS’s Strengths

The casJobs Server



Outline

Introduction

The CAS’s Strengths

The casJobs Server

Problems with the CAS



Outline

Introduction

The CAS’s Strengths

The casJobs Server

Problems with the CAS

Alternatives; or, Is the CAS a Good Idea?



Outline

Introduction

The CAS’s Strengths

The casJobs Server

Problems with the CAS

Alternatives; or, Is the CAS a Good Idea?

Summary



Introduction



Introduction

This presentation is intended as a discussion of the CAS
from a user’s point of view; it is not intended to contrast
CAS with other astronomical databases, built upon other
commercial databases.



Introduction

This presentation is intended as a discussion of the CAS
from a user’s point of view; it is not intended to contrast
CAS with other astronomical databases, built upon other
commercial databases.

We are only using a subset of the tools shipped with SQL-Server,
(e.g. Microsoft Query Analyser); I have no experience of
these tools, and as they are not available to random astro-
nomical consumers, they are not really relevant to CAS. It
is possible that we shall have to reconsider the decision not
to give users access to these tools.



We have become blasé about the capabilities of C (and e.g.
FORTRAN optimisers (e.g. optimal register allocation; con-
stant subexpression elimination), but there are still limits.
For example, the latest version of gcc doesn’t properly opti-
mise potentially aliased pointers, despite the use of the C99
keyword restrict.



We have become blasé about the capabilities of C (and e.g.
FORTRAN optimisers (e.g. optimal register allocation; con-
stant subexpression elimination), but there are still limits.
For example, the latest version of gcc doesn’t properly opti-
mise potentially aliased pointers, despite the use of the C99
keyword restrict.

The state of the art in database optimisers seems to be
many years behind that in programming languages such as
C. It is important not to overestimate their capabilities.



The CAS’s Strengths



The CAS’s Strengths

N.b. I have almost no experience of using the ‘official’
CAS web interface for queries; almost all of my work with
the CAS has been done using emacs to communicate directly
with the defined .asp interface.



The CAS’s Strengths

•The relational model maps well onto the sort of queries
that most astronomers are likely to want to make; only
simple joins are required to e.g. associate seeing with a
list of objects, or spectra with their photoObjs.1

1This join is actually pre-computed in the spectroPhotoObj (sp?) table.



The CAS’s Strengths

•The relational model maps well onto the sort of queries
that most astronomers are likely to want to make; only
simple joins are required to e.g. associate seeing with a
list of objects, or spectra with their photoObjs.1

•This good fit extends to SQL’s where clauses, e.g.
where psfMag_g - psfMag_r < 1.5 and psfMag_i < 18.

1This join is actually pre-computed in the spectroPhotoObj (sp?) table.



The CAS’s Strengths

•The relational model maps well onto the sort of queries
that most astronomers are likely to want to make; only
simple joins are required to e.g. associate seeing with a
list of objects, or spectra with their photoObjs.1

•This good fit extends to SQL’s where clauses, e.g.
where psfMag_g - psfMag_r < 1.5 and psfMag_i < 18.

•The documentation is generally sufficient, at least for the
basic tables. I have not tried to sort out e.g. the tiling
information from the provided documentation.

1This join is actually pre-computed in the spectroPhotoObj (sp?) table.



The CAS’s Strengths

•The relational model maps well onto the sort of queries
that most astronomers are likely to want to make; only
simple joins are required to e.g. associate seeing with a
list of objects, or spectra with their photoObjs.1

•This good fit extends to SQL’s where clauses, e.g.
where psfMag_g - psfMag_r < 1.5 and psfMag_i < 18.

•The documentation is generally sufficient, at least for the
basic tables. I have not tried to sort out e.g. the tiling
information from the provided documentation.

•CAS provides a good model for remote access to the SDSS
data, especially for those who do not wish to maintain a
local copy.

1This join is actually pre-computed in the spectroPhotoObj (sp?) table.



The casJobs Server

A very significant enhancement over the intial CAS is pro-
vided by the casJobs server, which allows a user to submit
arbitrary transact-SQL and to create private databases.



The casJobs Server

A very significant enhancement over the intial CAS is pro-
vided by the casJobs server, which allows a user to submit
arbitrary transact-SQL and to create private databases.

The casJobs server has been under development, and hasn’t
been stable enough for real work. This should be fixed in
the recently-announced DR2 casJobs server.



The casJobs Server

A very significant enhancement over the intial CAS is pro-
vided by the casJobs server, which allows a user to submit
arbitrary transact-SQL and to create private databases.

The casJobs server has been under development, and hasn’t
been stable enough for real work. This should be fixed in
the recently-announced DR2 casJobs server.

Using casJobs’s Transact-SQL features takes us further from
an ANSI-standard database.



The casJobs Server

A very significant enhancement over the intial CAS is pro-
vided by the casJobs server, which allows a user to submit
arbitrary transact-SQL and to create private databases.

The casJobs server has been under development, and hasn’t
been stable enough for real work. This should be fixed in
the recently-announced DR2 casJobs server.

Using casJobs’s Transact-SQL features takes us further from
an ANSI-standard database.

Using temporary tables to store expensive result sets is a
very nice feature.



The casJobs Server

A very significant enhancement over the intial CAS is pro-
vided by the casJobs server, which allows a user to submit
arbitrary transact-SQL and to create private databases.

The casJobs server has been under development, and hasn’t
been stable enough for real work. This should be fixed in
the recently-announced DR2 casJobs server.

Using casJobs’s Transact-SQL features takes us further from
an ANSI-standard database.

Using temporary tables to store expensive result sets is a
very nice feature.

The ability to create private tables (of e.g. the RC3) is also
very nice. This is added functionality, rather than a way
of improving upon the original CAS.



Problems with the CAS



Problems with the CAS

We still don’t have all of the data that has been processed
at FNAL in the CAS! What is more, I believe that it is CAS
loading concerns that prevented us from preprocessing a
handful of runs with the very latest photo.



Problems with the CAS

We still don’t have all of the data that has been processed
at FNAL in the CAS! What is more, I believe that it is CAS
loading concerns that prevented us from preprocessing a
handful of runs with the very latest photo.

This is not intrinsic to the CAS, but it is a problem that
we need to resolve with help from FNAL and JHU.



Problems with the CAS

We still don’t have all of the data that has been processed
at FNAL in the CAS! What is more, I believe that it is CAS
loading concerns that prevented us from preprocessing a
handful of runs with the very latest photo.

This is not intrinsic to the CAS, but it is a problem that
we need to resolve with help from FNAL and JHU.

Some innocent queries take a very long time to run. These
are often due to known bugs in the SQL-Server query opti-
miser (the ‘book-mark bug’). Most of these bugs are fixed
in the next release.



The range of available statistical functions is very limited;
e.g. medians and clipped means are hard to achieve with-
out complicated nested queries. These are fixed in the next
release, but at the cost of departing from ANSI-standard
SQL.



The range of available statistical functions is very limited;
e.g. medians and clipped means are hard to achieve with-
out complicated nested queries. These are fixed in the next
release, but at the cost of departing from ANSI-standard
SQL.

Some group by queries take a very long time to finish. This
is despite the fact that operators such as avg take only a
single pass to evaluate their values. I haven’t got chapter-
and-verse, but I suspect that these queries are taking sig-
nificantly longer than a simple sweep of the entire database.



The range of available statistical functions is very limited;
e.g. medians and clipped means are hard to achieve with-
out complicated nested queries. These are fixed in the next
release, but at the cost of departing from ANSI-standard
SQL.

Some group by queries take a very long time to finish. This
is despite the fact that operators such as avg take only a
single pass to evaluate their values. I haven’t got chapter-
and-verse, but I suspect that these queries are taking sig-
nificantly longer than a simple sweep of the entire database.

It is likely that these queries could be sped up by a com-
bination of temporary tables, and advice from someone
smarter and more experienced in SQL.



The range of available statistical functions is very limited;
e.g. medians and clipped means are hard to achieve with-
out complicated nested queries. These are fixed in the next
release, but at the cost of departing from ANSI-standard
SQL.

Some group by queries take a very long time to finish. This
is despite the fact that operators such as avg take only a
single pass to evaluate their values. I haven’t got chapter-
and-verse, but I suspect that these queries are taking sig-
nificantly longer than a simple sweep of the entire database.

It is likely that these queries could be sped up by a com-
bination of temporary tables, and advice from someone
smarter and more experienced in SQL.

It is also possible that these queries could be sped up by
carefully tuning the database hardware.



It’s a nuisance not being able to index tables (e.g. psfMag_u

rather than psfMag[0]). I cannot write a query,and then
run it again for a different band, and I cannot write a
catalogued procedure2 and pass in an index.

2Well, that’s what they are called in JCL



It’s a nuisance not being able to index tables (e.g. psfMag_u

rather than psfMag[0]). I cannot write a query,and then
run it again for a different band, and I cannot write a
catalogued procedure2 and pass in an index.

Some of this is circumvented by my skyserver mode for
emacs that provides a macro processor that looks a little
like transact-SQL.

2Well, that’s what they are called in JCL



It’s a nuisance not being able to index tables (e.g. psfMag_u

rather than psfMag[0]). I cannot write a query,and then
run it again for a different band, and I cannot write a
catalogued procedure2 and pass in an index.

Some of this is circumvented by my skyserver mode for
emacs that provides a macro processor that looks a little
like transact-SQL.

There is no support for symbolic names (e.g. for the SATUR

flag, or the value of dbo.fSpecClass(’qso’)). This is reme-
died by casJobs and by emacs’s skyserver.

2Well, that’s what they are called in JCL



Alternatives; or, Is the CAS a Good Idea?



Alternatives; or, Is the CAS a Good Idea?

I am not convinced that using the CAS is faster than writing
some special-purpose code to achieve my desires.



Alternatives; or, Is the CAS a Good Idea?

I am not convinced that using the CAS is faster than writing
some special-purpose code to achieve my desires.

For statistical operations (which would be done by a group

by in SQL, I think that writing a little piece of C (or IDL

or even (maybe) SM) and reading the FITS tables would
probably be faster than using SQL — and this allows for
the time that it would take to write (and maybe compile)
the code.



Alternatives; or, Is the CAS a Good Idea?

I am not convinced that using the CAS is faster than writing
some special-purpose code to achieve my desires.

For statistical operations (which would be done by a group

by in SQL, I think that writing a little piece of C (or IDL

or even (maybe) SM) and reading the FITS tables would
probably be faster than using SQL — and this allows for
the time that it would take to write (and maybe compile)
the code.

It is not clear to me that this would still be true if the
DB were a thousand times bigger; it is possible that the
database management system would do a much better job
of distributing queries over many machines.



The same holds for point queries (on e.g. magnitudes and
colours); if I’m serious about querying the entire database
with a not-very restrictive set of cuts, I suspect that there’s
not (yet?) much gain from using the CAS.



The same holds for point queries (on e.g. magnitudes and
colours); if I’m serious about querying the entire database
with a not-very restrictive set of cuts, I suspect that there’s
not (yet?) much gain from using the CAS.

For 2-point queries (‘find me pairs of objects that satisfy...’)
the CAS is very convenient. Of course, I could create some
auxiliary FITS tables to make this easier — but now I’m
inventing my own specialised database.



The same holds for point queries (on e.g. magnitudes and
colours); if I’m serious about querying the entire database
with a not-very restrictive set of cuts, I suspect that there’s
not (yet?) much gain from using the CAS.

For 2-point queries (‘find me pairs of objects that satisfy...’)
the CAS is very convenient. Of course, I could create some
auxiliary FITS tables to make this easier — but now I’m
inventing my own specialised database.

This comparison with a local C query is rather unfair, as in
the latter case I have total control over my local hardware
configuration, and this isn’t true of the CAS.



Summary



Summary

The syntax and functionality of the CAS (especially as aug-
mented as casJobs) is exactly what we need.



Summary

The syntax and functionality of the CAS (especially as aug-
mented as casJobs) is exactly what we need.

The speed with which some queries complete is in practice
frustratingly slow.



Summary

The syntax and functionality of the CAS (especially as aug-
mented as casJobs) is exactly what we need.

The speed with which some queries complete is in practice
frustratingly slow.

A combination of more experience, more smarts, and more
careful tuning, may go a long way to resolving these prob-
lems.


